# Closest Pair solution codeforces

## Closest Pair solution codeforces

There are nn weighted points on the OXOX-axis. The coordinate and the weight of the ii-th point is xixi and wiwi, respectively. All points have distinct coordinates and positive weights. Also, xi<xi+1xi<xi+1 holds for any 1i<n1≤i<n.

The weighted distance between ii-th point and jj-th point is defined as |xixj|(wi+wj)|xi−xj|⋅(wi+wj), where |val||val| denotes the absolute value of valval.

You should answer qq queries, where the ii-th query asks the following: Find the minimum weighted distance among all pairs of distinct points among the points in subarray [li,ri][li,ri].

Input

The first line contains 2 integers nn and qq (2n3105;1q3105)(2≤n≤3⋅105;1≤q≤3⋅105) — the number of points and the number of queries.

Then, nn lines follows, the ii-th of them contains two integers xixi and wiwi (109xi109;1wi109)(−109≤xi≤109;1≤wi≤109) — the coordinate and the weight of the ii-th point.

It is guaranteed that the points are given in the increasing order of xx.

Then, qq lines follows, the ii-th of them contains two integers lili and riri (1li<rin)(1≤li<ri≤n) — the given subarray of the ii-th query.

Output

For each query output one integer, the minimum weighted distance among all pair of distinct points in the given subarray.

Example
input

Copy
5 5
-2 2
0 10
1 1
9 2
12 7
1 3
2 3
1 5
3 5
2 4

output

Copy
9
11
9
24
11

Note

For the first query, the minimum weighted distance is between points 11 and 33, which is equal to |x1x3|(w1+w3)=|21|(2+1)=9|x1−x3|⋅(w1+w3)=|−2−1|⋅(2+1)=9.

For the second query, the minimum weighted distance is between points 22 and 33, which is equal to |x2x3|(w2+w3)=|01|(10+1)=11|x2−x3|⋅(w2+w3)=|0−1|⋅(10+1)=11.

For the fourth query, the minimum weighted distance is between points 33 and 44, which is equal to |x3x4|(w3+w4)=|912|(2+7)=24|x3−x4|⋅(w3+w4)=|9−12|⋅(2+7)=24.