• # For Solution

There are `n` points on a road you are driving your taxi on. The `n` points on the road are labeled from `1` to `n` in the direction you are going, and you want to drive from point `1` to point `n` to make money by picking up passengers. You cannot change the direction of the taxi.

The passengers are represented by a 0-indexed 2D integer array `rides`, where `rides[i] = [starti, endi, tipi]` denotes the `ith` passenger requesting a ride from point `starti` to point `endi` who is willing to give a `tipi` dollar tip.

For each passenger `i` you pick up, you earn `endi - starti + tipi` dollars. You may only drive at most one passenger at a time.

Given `n` and `rides`, return the maximum number of dollars you can earn by picking up the passengers optimally.

Note: You may drop off a passenger and pick up a different passenger at the same point.

Example 1: Maximum Earnings From Taxi solution leetcode

```Input: n = 5, rides = [[2,5,4],[1,5,1]]
Output: 7
Explanation: We can pick up passenger 0 to earn 5 - 2 + 4 = 7 dollars.
```

Example 2: Maximum Earnings From Taxi solution leetcode

```Input: n = 20, rides = [[1,6,1],[3,10,2],[10,12,3],[11,12,2],[12,15,2],[13,18,1]]
Output: 20
Explanation: We will pick up the following passengers:
- Drive passenger 1 from point 3 to point 10 for a profit of 10 - 3 + 2 = 9 dollars.
- Drive passenger 2 from point 10 to point 12 for a profit of 12 - 10 + 3 = 5 dollars.
- Drive passenger 5 from point 13 to point 18 for a profit of 18 - 13 + 1 = 6 dollars.
We earn 9 + 5 + 6 = 20 dollars in total.```

Constraints: Maximum Earnings From Taxi solution leetcode

• `1 <= n <= 105`
• `1 <= rides.length <= 3 * 104`
• `rides[i].length == 3`
• `1 <= starti < endi <= n`
• `1 <= tipi <= 105`