# Yet Another Minimization Problem solution codeforces

## Yet Another Minimization Problem solution codeforces

You are given two arrays aa and bb, both of length nn.

You can perform the following operation any number of times (possibly zero): select an index ii (1in1≤i≤n) and swap aiai and bibi.

Let’s define the cost of the array aa as ni=1nj=i+1(ai+aj)2∑i=1n∑j=i+1n(ai+aj)2. Similarly, the cost of the array bb is ni=1nj=i+1(bi+bj)2∑i=1n∑j=i+1n(bi+bj)2.

Input

Each test case consists of several test cases. The first line contains a single integer tt (1t401≤t≤40) — the number of test cases. The following is a description of the input data sets.

The first line of each test case contains an integer nn (1n1001≤n≤100) — the length of both arrays.

The second line of each test case contains nn integers a1,a2,,ana1,a2,…,an (1ai1001≤ai≤100) — elements of the first array.

The third line of each test case contains nn integers b1,b2,,bnb1,b2,…,bn (1bi1001≤bi≤100) — elements of the second array.

It is guaranteed that the sum of nn over all test cases does not exceed 100100.

Output

For each test case, print the minimum possible total cost.

Example
input

Copy
3
1
3
6
4
3 6 6 6
2 7 4 1
4
6 7 2 4
2 5 3 5

output

Copy
0
987
914

Note

In the second test case, in one of the optimal answers after all operations a=[2,6,4,6]a=[2,6,4,6]b=[3,7,6,1]b=[3,7,6,1].

The cost of the array aa equals to (2+6)2+(2+4)2+(2+6)2+(6+4)2+(6+6)2+(4+6)2=508(2+6)2+(2+4)2+(2+6)2+(6+4)2+(6+6)2+(4+6)2=508.

The cost of the array bb equals to (3+7)2+(3+6)2+(3+1)2+(7+6)2+(7+1)2+(6+1)2=479(3+7)2+(3+6)2+(3+1)2+(7+6)2+(7+1)2+(6+1)2=479.

The total cost of two arrays equals to 508+479=987508+479=987.